Update on Fibroblastic and Myofibroblastic Tumors in Young Patients

Cheryl M. Coffin, M. D.
Goodpasture Professor of Pathology, Microbiology, and Immunology
Vice Chair and Executive Medical Director of Anatomic Pathology
Vanderbilt University, Nashville, TN
Key Facts and Challenges

- >10% of soft tissue tumors in newborns to 20 year olds have a fibroblastic-myofibroblastic phenotype
- Clinicopathologic spectrum encompasses reactive, malformative, benign, locally aggressive, rarely metastasizing, and malignant lesions
- Morphologic and immunohistochemical similarities
- Biologic, genetic, and therapeutic diversity
Objectives

• To review the current classification of fibroblastic-myofibroblastic tumors
• To summarize new information and recently described lesions
• To review the re-emergence of fibrosarcoma as an entity
Fibroblastic – Myofibroblastic Masses

• Benign
 Malformations/ overgrowths
 Reactive processes
 Pseudosarcomas
 Fibromas
 Fibromatoses, juvenile and adult
• Locally recurrent/rarely metastasizing neoplasms
• Fibroblastic and myofibroblastic sarcomas
2013 WHO Classification of Fibroblastic-Myofibroblastic Tumors

- 32 entities
- 18 benign
- 10 locally recurring and/or rarely metastasizing
- 4 malignant (true sarcomas)
Gardner Fibroma: A Sentinel Lesion for APC and Desmoids

- Benign plaquelike mass: overgrowth or neoplasm?
- Children and young adults
- Association with FAP/APC and desmoids-to what extent?
- Overexpression of beta-catenin and other proteins in the APC and Wnt pathways
- Surgery vs. no treatment?
- Any association with CTNNB1 mutation?
Gardner fibroma and desmoid
Juvenile Desmoid Tumors: A Potential Harbinger of APC

- 15-40% of desmoids occur in NB – 20 y.o
- APC in at least 25%; GAF in a subset
- 3-12% are multiple
- Trunk and extremities
- 60% recur; 20% multiple recurrences
- Death in < 2%
- Surgery, chemotherapy more effective than radiotherapy
Desmoid
Genetic Aberrations in Desmoids

- Monoclonal
- *APC* mutation
- *Beta-catenin* mutations
- 5q loss, 6q loss, 20q gain, trisomy 8
- Mesenchymal stem cell markers
APC Mutations and Desmoids

- APC mutations occur in both FAP-associated and sporadic desmoids
- In FAP: 10-15% of patients develop desmoids
 - 852-fold increased risk
- Intrafamilial phenotypic variation
- Germline APC mutations
- In sporadic desmoids, somatic APC mutations
- FAP-associated desmoids have more intratumoral genetic aberrations (losses of 5q22, 6q15-q22.3, 13q14.11 – q34)
Beta-Catenin Mutations and Desmoids

• 19-87% of sporadic desmoids harbor a *CTNNB1* mutation at 3p22 (codons 41A, 45F, 45P); ethnic/geographic variability

• *CTNNB1* codon 45F mutation seems to be associated with higher recurrence risk

• *CTNNB1* mutations are more frequent than APC mutations in pediatric desmoids (66% vs. 18%)
Lipofibromatosis: A Bland But Locally Aggressive Neoplasm

- Infancy and childhood; 25% congenital
- Distal extremities favored site
- Male predilection
- 75% recur locally
- t(4;6;9) in one case
- What about “infantile fibromatosis”?
Lipofibromatosis
Giant Cell Fibroblastoma: A Locally Aggressive Neoplasm Related to DFSP

- Superficial soft tissue mass
- Male predominance (⅔)
- 50% before 5 years; 90% before 12 years
- Median age 6 years
- Chest wall, back, axilla, inguinal region, thigh
- Local recurrence rate 50%
- $COL1A1$-$PDGFB$ gene fusion
Giant cell fibroblastoma
Giant cell fibroblastoma
Myxoid giant cell fibroblastoma
Dermatofibrosarcoma Protuberans: An Aggressive “Mature” Form of GCF?

- Superficial soft tissue nodular or multinodular mass
- Slight male predominance
- 10-30% in newborns-20 year olds
- Trunk, proximal extremities, head and neck
- Recurrence rate 20-50%
- Rapid enlargement signals progression to fibrosarcomatous DFSP
- Metastasis rare, associated with fibrosarcomatous DFSP
- \(\text{COL1A1-PDGFB} \) gene fusion
Myxoid DFSP, CD34
DFSP: myoid nodules
SMA in myoid nodule, DFSP
DFSP with fibrosarcoma
Genetics: GCF and DFSP

- GCF: t(17;22)(q21.3;q13.1) balanced or unbalanced, with \(COL1A1-PDGFB\) gene fusion
- DFSP: supernumerary ring chromosome composed of sequences from chromosomes 17 and 22 or unbalanced t(17;22)(q21.3;q13.1) in pediatric cases, with \(COL1A1-PDGFB\) gene fusion; trisomies 5 and 8
- Responsive to imatinib: when should it be used?
- Is distinction between GCF and DFSP necessary?
Extrapleural Solitary Fibrous Tumor: A Rarely Metastasizing Tumor Whose Classification is Evolving

- Terminology encompasses hemangiopericytoma, lipomatous hemangiopericytoma, giant cell angiofibroma
- Rare in children and adolescents
- Orbital, nasal, and other sites
- Recurrence and metastasis possible
- Prognostic indicators elusive
- What about CNS and sinonasal hemangiopericytoma?
Solitary fibrous tumor, classic
Solitary fibrous tumor, myxoid
Solitary fibrous tumor

- CD34
- CD99
- Bcl-2
- SMA
Solitary fibrous tumor, variants
Infantile Fibrosarcoma (IFS): A Locally Aggressive, Rarely Metastasizing Tumor

- Intermediate, rarely metastasizing neoplasm
- Infancy; 50% congenital
- Rapid growth, large size
- Extremities, trunk, head/neck, kidney (CCMN)
- t(12;15) with $ETV6-NTRK3$ fusion
- Gains of chromosomes 8, 11, 17, 21
- Surgery, chemotherapy effective
- To what extent is genetic testing necessary?
Infantile fibrosarcoma
Infantile fibrosarcoma
Infantile fibrosarcoma
Inflammatory Myofibroblastic Tumor

- IMT is a distinctive neoplasm composed of myofibroblastic and fibroblastic spindle cells accompanied by an inflammatory infiltrate of plasma cells, lymphocytes, and/or eosinophils. It occurs primarily in soft tissue and viscera of children and young adults. (WHO, 2013).
- Clinical and laboratory syndrome
- 150-200 cases per year in U.S.
- Local recurrence in 25%; metastasis rare
- Activating ALK gene rearrangements in 50-60%
- Potential for targeted treatment
The Re-Emergence of Fibrosarcoma As An Entity

- With enhanced ability to diagnose monophasic synovial sarcoma and MPNST with adjunct tests, fibrosarcoma seemed to be a disappearing entity
- In the past decade or so, specific fibrosarcomas and myofibroblastic sarcomas have been recognized
- “True” fibrosarcoma now includes 4 subtypes: adult fibrosarcoma, low-grade fibromyxoid sarcoma, sclerosing epithelioid fibrosarcoma, and myxofibrosarcoma
- To what extent is distinction among these types necessary?
Low Grade Fibromyxoid Sarcoma

- A specific subtype of fibrosarcoma
- 20% in NB-20 y.o.
- Proximal extremities and trunk, superficial or deep
- Head/neck and superficial sites favored in children
- Recurrence in 9%, metastases in 6% (late)
- Histologic variants
- t(7;16)(q34;p11) with FUS-$CREB3L2$ gene fusion
Low grade fibromyxoid sarcoma
Low grade fibromyxoid sarcoma
Low grade fibromyxoid sarcoma
Adult Fibrosarcoma
Sclerosing Epithelioid Fibrosarcoma
Myxofibrosarcoma
Persistent Questions

• When is it important to distinguish among these similar-appearing tumors?
• With 32 entities in the 2013 WHO classification, and others too rare for inclusion, will the group of fibroblastic-myofibroblastic tumors continue to expand? How will classification change in the future?
• How can the surgical pathologist contribute to the diagnosis, clinical management, and improved understanding of these challenging tumors?
• To what extent can treatment be tailored to individual tumors and individual patients?